Landmark-Based Inertial Navigation System for Autonomous Navigation of Missile Platform
نویسندگان
چکیده
منابع مشابه
Gyroscope Drift Error Analysis in the Position-Independent Navigation Algorithm of a stable platform Inertial System
This paper deals with analyzing gyroscope drift error in the position-independent navigation algorithm of a stable platform inertial system. Most of the stable platform navigation algorithms proposed in the literature have drawbacks of estimating position rates for alignment commands. Not only the estimating position rates are the basic source of position errors, but they also make the alignmen...
متن کاملLandmark-Based Autonomous Navigation in Sewerage Pipes
We describe a method for an autonomous mobile robot to navigate through a system of sewerage pipes. Landmarks signalling positions in the pipe system have to be detected and classi ed, where classi cation is allowed to be unreliable. Self localization is interpreted as a partially observable Markov decision problem and solved accordingly. The method is implemented and used on a prototype robot ...
متن کاملNatural landmark-based autonomous vehicle navigation
This article describes a natural landmark navigation algorithm for autonomous vehicles operating in relatively unstructured environments. The algorithm employs points of maximum curvature, extracted from laser scan data, as point landmarks in an extended Kalman filter. A curvature scale space algorithm is developed to locate points of maximum curvature. The location of these points is invariant...
متن کاملAdaptive Fusion of Inertial Navigation System and Tracking Radar Data
Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...
متن کاملLandmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation
The navigation of pedestrians based on inertial sensors, i.e., accelerometers and gyroscopes, has experienced a great growth over the last years. However, the noise of medium- and low-cost sensors causes a high error in the orientation estimation, particularly in the yaw angle. This error, called drift, is due to the bias of the z-axis gyroscope and other slow changing errors, such as temperatu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2020
ISSN: 1424-8220
DOI: 10.3390/s20113083